

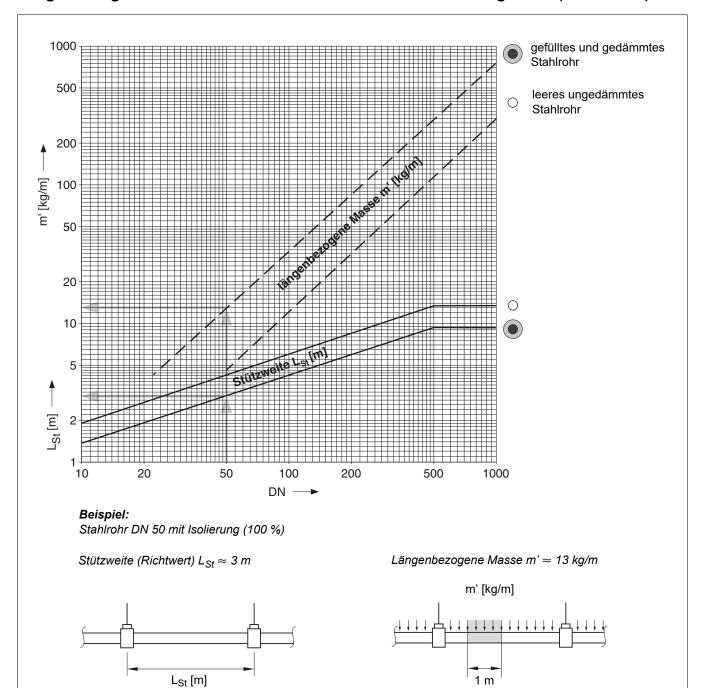
Inhaltsverzeichnis

Längenbezogene Masse und Stützweiten für Stahlrohr im Anlagenbau (Richtwerte)	18.1
Stützweiten in der Haustechnik für Rohre aus Stahl, Kupfer, Kunststoff (Richtwerte)	18.2
Stützweiten für Kunststoffrohre (Richtwerte nach Herstellerangaben)	18.3
Gewichte je Halterung (Berechnung, Simulation und Sicherheitsbeiwert S)	18.4
Längenänderung von Rohrleitungen und Längenausdehnungskoeffizient	18.5
Mindestlänge für Biegeschenkel L _A bei warmgehenden Leitungen (Richtwerte)	18.6
Festpunktkraft für Rohrleitungen aus Stahl (Näherungswerte)	18.7
Werkstoffkennwerte und Restriktionen für statische Belastung	18.8
Korrosionsschutz	18.9

Quellenangaben

- [1] Wagner, Walter: Rohrleitungstechnik, Vogel-Buchverlag, 10. Auflage, 2008
- [2] Wagner, Walter: Planung im Anlagenbau, Vogel-Buchverlag, 2. Auflage, 2003
- [3] Wagner, Walter: Festigkeitsberechnungen im Apparate und Rohrleitungsbau, Vogel-Buchverlag, 7. Auflage, 2007
- [4] DVS 2210-01: Industrierohrleitungen aus thermoplastischen Kunststoffen

für weiterführende Hinweise zur Stützweitenbestimmung von Kunststoffrohren


Formelzeichen

Werkstoffe

А	austenitischer Stahl
Cu	Kupfer
F (Fe)	ferritischer Stahl
HDPE	Polyethylen hoher Dichte
M	martensitischer Stahl
PE	Polyethylen
PP	Polypropylen
PVC	Polyvinylchlorid
PVDF	Polyvinyldenfluorid
St	Stahl
VA	nichtrostender Stahl

Längenbezogene Masse und Stützweiten für Stahlrohr im Anlagenbau (Richtwerte)

Anmerkungen

- (1) Die angegebenen Richtwerte gelten für Stahlrohre mit Normalwanddicke und Mediumstemperatur bis 400°C. Bei größeren Wanddicken nimmt die längenbezogene Masse zu.
 - Bei kleineren Wanddicken (häufig im VA-Bereich) nimmt die zulässige Stützweite ab.
- (2) Die Zulässigkeit einer gewählten Stützweite ist durch eine Elastizitätsanalyse begründet. Bei Überschreitung der angegebenen Richtwerte und/oder besonderen Randbedingungen (z.B. hohe Temperatur, Schwingungseinfluss o.ä.) ist ein gesonderter ingenieurtechnischer Nachweis inkl. Elastizitätsanalyse erforderlich.

Quellenangaben

Wagner, Walter: Rohrleitungstechnik, Vogel-Buchverlag, 10. Auflage, 2008;

DIN EN 13480-3: Metallische industrielle Rohrleitungen, 2002

Stützweiten in der Haustechnik für Rohre aus Stahl, Kupfer, Kunststoff (Richtwerte)

	Nennweite						.UIISISIUII INI 1088 2 (711	•	•
Nemweite	Nemweite	eite Außen-Ø SIKLA - Empfehlungen Rohre wassergefüllt mit Isolierung ¹⁾		-	DIN 1988-2 (zurückgezogen) Rohre wassergefüllt				
			Stahlrohr	Stahlrohr	Cu-Rohr	Stahlrohr	Cu-Rohr	-	-Rohr
[DN]	[Zoll]	[mm]	EN 10220	EN 10255	EN 1057	EN 10255	EN 1057	bei	bei
			DIN 2448	DIN 2440	DIN 1786	DIN 2440	DIN 1786	20°C	40°C
		10.0	DIN 2458		4.00		4.05		
		12,0	4.00		1,00		1,25		
10		13,5	1,00		4.40		4.05		
		15,0			1,10		1,25	0.00	0.50
40	0./0"	16,0		4.00		0.05		0,80	0,50
10	3/8"	17,2		1,20	4.00	2,25	4.50		
45		18,0	4.00		1,20		1,50	0.00	0.00
15 15	1/2"	20,0	1,20	4.50		0.75		0,90	0,60
	1/2	21,3 22,0		1,50	1,30	2,75	2,00		
20		25,0	1,40		1,30		2,00	0,95	0,65
20	3/4"		1,40	2.00		2.00		0,95	0,05
	3/4	26,9 28,0		2,00	1,50	3,00	2,25		
25		30,0	1,80		1,50		2,23		
		32,0	1,00					1,05	0,70
25	1"	33,7		2,50		3,50		1,00	0,70
	1	35,7		2,30	1,60	3,30	2,75		
32		38,0	2,20		1,00		2,75		
		40,0	2,20					1,05	0,70
		42,0			1,80		3,00	1,00	0,70
32	1 1/4"	42,4		2,90	1,00	3,75	3,00		
40	1 1/4	44,5	2,40	2,30		3,73			
40	1 1/2"	48,3	2,40	3,30		4,25			
	1 1/2	50,0		0,00		7,20		1,40	1,10
		54,0			2,00		3,50	1,10	1,10
50		57,0	3,10		2,00		0,00		
50	2"	60,3	0,10	4,00		4,75			
	_	63,0		.,00		.,. •		1,50	1,20
		64,0					4,00	-,	-,
		75,0					,	1,65	1,35
65		76,1	3,30				4,25	,	,
65	2 1/2"	76,1	, -	4,75		5,50	, -		
80		88,9	4,20				4,75		
80	3"	88,9		5,25		6,00			
		90,0						1,80	1,50
100		108,0	4,50				5,00		
100	4"	114,3		5,80		6,00			
		110,0						2,00	1,70
125		133,0	5,10				5,00		
125	5"	139,7		6,50		6,00			
		140,0						2,25	1,95
150		159,0	5,80				5,00		
		160,0						2,40	2,10
150	6"	168,3		7,20					
200	8"	219,1	7,80						

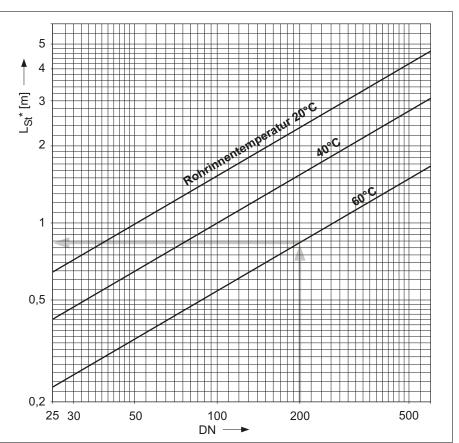
^{1) 100 % -} Isolierung mit 100 kg/m³ und 1 mm Stahlblechmantel für Rohre in Normalwanddicke

Stützweiten für Kunststoffrohre (Richtwerte nach Herstellerangaben)

3

Rohrleitungen aus PVC - hart

Medium	KM
Gas	1,3
1 < Dichte [g/cm³] ≤ 1,8	0,8


Rohrreihe DIN 8062	KR
1	1,0
2	1,3
3	1,6
4	1,8
5	2,0
6	2,3

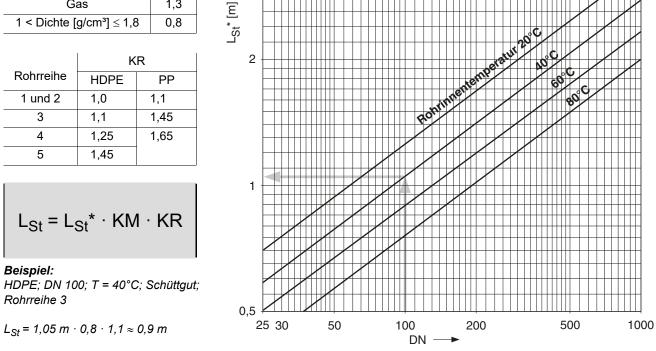
$$L_{St} = L_{St}^* \cdot KM \cdot KR$$

Beispiel:

DN 200; T = 60°C; Gas; Rohrreihe 5

 $L_{St} = 0.83 \ m \cdot 1.3 \cdot 2.0 \approx 2.1 \ m$

Rohrleitungen aus HDPE oder PP

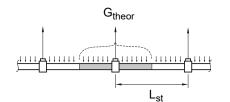

Medium	KM
Gas	1,3
1 < Dichte [g/cm³] ≤ 1,8	0,8

	KR		
Rohrreihe	HDPE	PP	
1 und 2	1,0	1,1	
3	1,1	1,45	
4	1,25	1,65	
5	1,45		

$$L_{St} = L_{St}^* \cdot KM \cdot KR$$

Beispiel:

HDPE; DN 100; T = 40°C; Schüttgut; Rohrreihe 3

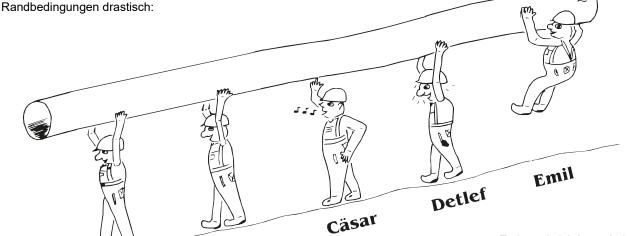

Gewichte je Halterung (Berechnung, Simulation und Sicherheitsbeiwert S)

Theorie

$$G_{theor} = G' \cdot L_{st}$$

Beispiel:

 D_a = 168,3 mm, DIN 2448, L_{st} = 4 m m' = 38 kg/m \approx 0,38 kN/m = G' G_{thoer} = 0,38 kN/m \cdot 4 m \approx 1,5 kN


Erläuterung:

Zur statischen Dimensionierung einer Rohrhalterung ist das von der Rohrschelle aufzunehmende Gewicht zu ermitteln.

Die Länge der theoretisch zugeordneten Rohrabschnitte entspricht dabei der Stützweite L_{st}.

Praxis

Die theoretische Belastungsverteilung am Durchlaufträger (Belastungsfall 1) verändert sich unter Berücksichtigung praktischer

Zu berücksichtigen sind:

- Vertikalabschnitte
- Abgänge
- Armaturen
- Isoliergewicht
- Montagebesonderheiten.

	Belastung je "Halter" (kN)					max.	
Belastungsfall	Arthos	Bert	Cäsar	Detlef	Emil	"Übergewicht"	Bewertung
1) alle 5 Halter tragen	1,6	1,4	1,5	1,4	1,6	7 %	Theorie
2) Cäsar pfeift, 4 Halter tragen	1,3	2,5	-	2,5	1,3	67 %	Normalfall
3) Cäsar pfeift + Emil freut sich	1,7	1,2	-	4,6	-	207 %	Extremfall

In der Praxis sollte deshalb bei der Auslegung ein Sicherheitsbeiwert S berücksichtigt werden. Ausgehend von den Simulationsbetrachtungen wird S je nach Einsatzfall mit S = $1,5 \dots 2,5$ zu bemessen sein.

$$G_{prakt} = G' \cdot L_{st} \cdot S$$

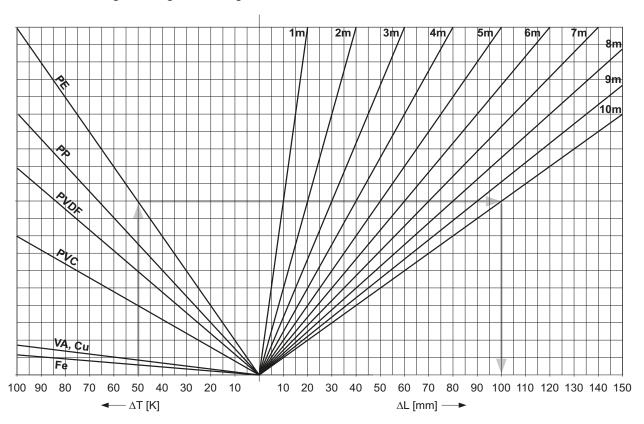
Arthos

Beispiel:

Bert

 $D_a = 168,3 \text{ mm}, \text{ DIN } 2448$ $L_{st} = 4 \text{ m}, \text{ G}' = 0,38 \text{ kN/m}$ S = 2,0

 G_{prakt} = 0,38 kN/m · 4 m · 2 \approx 3 kN


Hinweis:

Nach EN 13480 sind bei Lastkonzentrationen (Ventile, senkrechte Leitungsabschnitte u.a.) zusätzliche Abstützungen vorzusehen.

Längenänderung von Rohrleitungen und Längenausdehnungskoeffizient

Grafische Bestimmung der Längenänderung

$$\Delta T = T_{Betrieb} - T_{Einbau}$$

PE-Rohr; L = 10 m; $T_{Betrieb}$ = 70 °C; T_{Einbau} = 20 °C

$$\Delta T = 70 \, ^{\circ}\text{C} - 20 \, ^{\circ}\text{C} = 50 \, \text{K}$$

grafische Bestimmung:

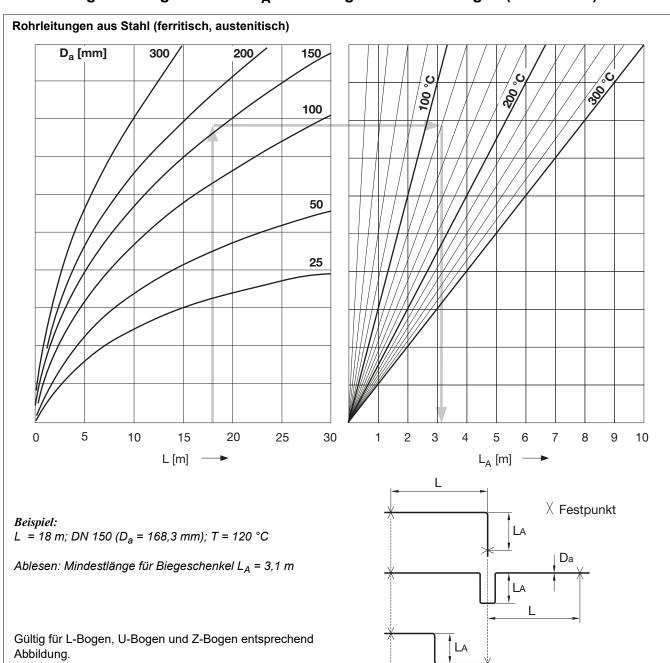

$$\Delta T = 50 \text{ K} \rightarrow PE \rightarrow L = 10 \text{ m} \rightarrow \Delta L = 100 \text{ mm}$$

$$\Delta L = L \cdot \beta \cdot \Delta T$$

rechnerische Lösung:

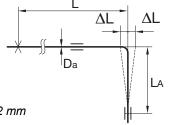
$$\Delta L = 10 \ m \cdot 0.2 \ \frac{mm}{m \cdot K} \cdot 50 \ K = 100 \ mm$$

Längenausdehnungskoeffizient				
Material	ß			
	[mm/(m·K)]			
HDPE, PE	0,200			
PB, PP	0,150			
PVDF	0,12 0,18			
PVC	0,080			
A = Stahl (VA), Cu	0,017			
F = Stahl (ferr.)	0,012			


Hinweis:

Mit steigender Temperatur steigt der Längenausdehnungskoeffizient weiter an. Für Berechnungen ab 200°C ist deshalb die rechnerische Lösung mit integralem Längenausdehnungskoeffizienten anzuwenden.

Mindestlänge für Biegeschenkel LA bei warmgehenden Leitungen (Richtwerte)

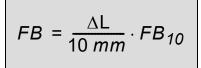

Rohrleitungen	aus	Kuns	tstoff
\Markat	-tf		

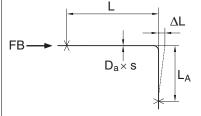
Werkstoff	С
HDPE	26,0
MEPLA	33,0
PP	30,0
PVC	33,5
PVDF	21,6

Beispiel:

$$PP; L = 8 m; D_a = 160 mm; T = 80 °C$$

$$L_A = C \cdot \sqrt{D_a \cdot \Delta L}$$

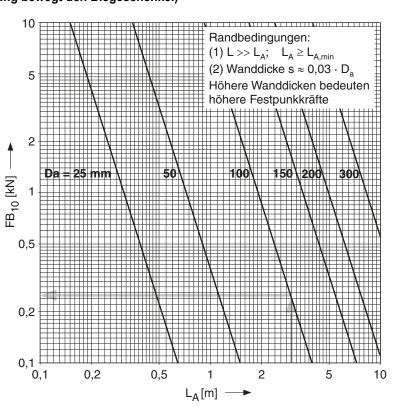

1.) Längenausdehnung ermitteln: $\Delta L = 72 \text{ mm}$


2.)
$$L_A = 30 \cdot \sqrt{160 \text{mm} \cdot 72 \text{mm}} = 3200 \text{ mm} = 3.2 \text{ m}$$

Festpunktkraft für Rohrleitungen aus Stahl (Näherungswerte)

Festpunktkraft aus Biegung (Rohrausdehnung bewegt den Biegeschenkel)

Beispiel:


Stahlrohr DIN 2458, L = 15 m $L_A = 3 \text{ m}$; $D_a = 101,6 \text{ mm}$; $T = 120 ^{\circ}\text{C}$

$$\rightarrow \Delta T = 100 K \rightarrow \Delta L = 18 mm$$

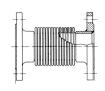
$$FB = \frac{18 \ mm}{10 \ mm} \cdot 0,25 \ kN = 0,45 \ kN$$

Anmerkung:

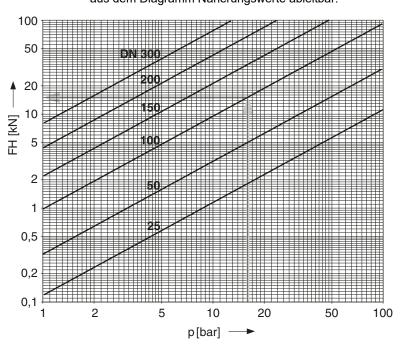
Die Festpunktkraft FP ist größer als FB, da die Reibungskräfte der Gleitlager zu addieren sind: FP = FB + FR

Festpunktkraft bei Axialkompensatoren

$$FP = FH + FF + FR$$

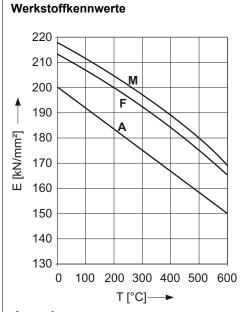

Beispiel:

Axialkompensator DN 100; p = 16 bar \rightarrow hydrostatische Kraft FH ≈ 15 kN


Anmerkung:

FH bildet in der Regel den Hauptanteil an der Festpunktkraft. Die gesamte Festpunktkraft FP ist jedoch größer, da die Federkraft des Kompensators (FF) und die Reibungskräfte der Gleitlager (FR) zu addieren sind.

Ausführungsform eines Axialkompensators mit Flansch.


Für eine exakte Berechnung der hydrostatischen Kraft FH ist der Balgquerschnitt nach Herstellerangabe zu beachten. Auf Basis Nenndurchmesser DN sind aus dem Diagramm Näherungswerte ableitbar.

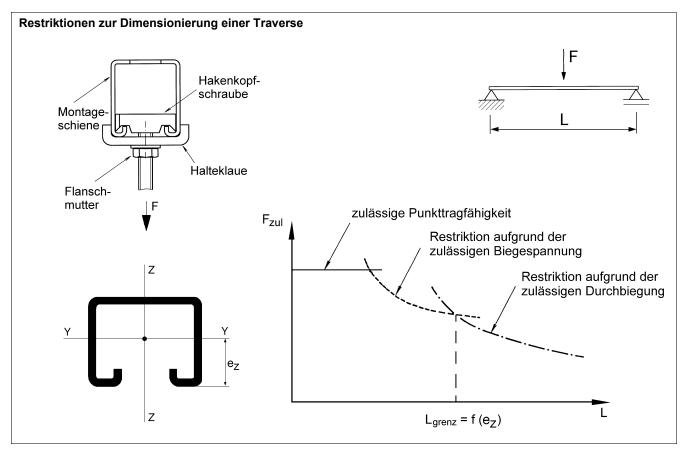
Werkstoffkennwerte und Restriktionen für statische Belastung

	Stre	ckgren	ze Re [Temperatur [°C]				
Werkstoff	50	200	250	300	350	400	450	500
S235JR (St 37)	235 161 143 122		122	-	-	-	-	
1.4301	177	127	118	110	104	98	95	92
1.4401	196	147	137	127	120	115	112	110
1.4571	202	167	157	145	140	135	131	129

M = martensitisch

F = ferritisch

A = austenitisch


Die Streckgrenzwerte für S235JR gelten für Wanddicken bis 16 mm, lt. AD 2000 MB W1.

Anmerkung:

Die angegebenen Werte für Re sind Werkstoffkennwerte. Sicherheitsfaktoren sind zusätzlich zu berücksichtigen. Für feuerverzinkte Produkte liegt die Temperaturobergrenze bei 250 °C. S235JR (St 37) sollte über 300 °C nicht mehr eingesetzt werden. Bei besonders hohen Temperaturen ist bei der Werkstoffauswahl die Zeitstandsfestigkeit zu berücksichtigen.

Achtung!

▶ Da die Festigkeitseigenschaften von Stahl bei höheren Temperaturen deutlich abnehmen, müssen die abgeminderten Werte bei Berechnungen unbedingt beachtet werden. Zwischenwerte sind linear zu interpolieren.

Korrosionsschutz

1. Korrosivitätskategorie nach DIN EN ISO 12944-2

Korrosivitäts- kategorie	Korrosions- belastung	Außenbereich (typische Beispiele)	Innenbereich (typische Beispiele)
C1	unbedeutend	unzutreffend für Mitteleuropa (im Freien mindestens C 2, d.h. geringe Anforderungen)	geheizte Gebäude mit neutralen Atmosphären, z. B. Büros, Läden, Schulen, Hotels
C2	gering	Atmosphären mit geringer Verunreinigung; meist ländliche Bereiche	ungeheizte Gebäude, wo Kondensation auftreten kann, z. B. Lager, Sporthallen.
C3	mäßig	Stadt- und Industrieatmosphäre, mäßige Verunreinigungen durch Schwefeldioxid; Küstenbereiche mit geringer Salzbelastung	Produktionsräume mit hoher Feuchte und etwas Luftverunreinigung, z. B. Anlagen zur Lebensmittelherstellung, Wäschereien, Brauereien, Molkereien
C4	stark	industrielle Bereiche und Küstenbereiche mit mäßiger Salzbelastung	Chemieanlagen, Schwimmbäder, Bootsschuppen über Meerwasser
C5-I (Industrie)	sehr stark	industrielle Bereiche mit hoher Feuchte und aggressiver Atmosphäre	Gebäude oder Bereiche mit nahezu ständiger Kondensation und mit starker Verunreinigung
C5-M (Meer)	sehr stark	Küsten- und Offshorebereiche mit hoher Salzbelastung	Gebäude oder Bereiche mit nahezu ständiger Kondensation und mit starker Verunreinigung

2. Verfahrensauswahl in Abhängigkeit von Korrosivitätskategorie und vorgesehener Nutzungsdauer

HCP = High Corrosion Protection = HCP
Beständigkeit mind. wie beim Schmelztauchverzinken

			Destandighen mind. We beim bennetztadenverzinken						
Verfahren	galv. Verzinken	Feuervo	Zinklamellenbeschichtung						
Medium	elektrolytische Über- tragung von Zinkionen	mittels Temper Eintauchen in	anorganischer Überzug aus Zink- und Alu-Lamellen						
Ablauf	Galvanisieren, diskontinuierlich, Einhängen	Bandverzinken, kontinuierlich, Sendzimirverfahren	Stückverzinken, diskontinuierlich, Eintauchen (tZn)	Beschichten und Einbrennen bei ca. 200 °C					
Normen	DIN 50961	DIN EN 10346	DIN EN ISO 1461 (Großteile), DIN EN ISO 10684 (Verbindungselemente)	DIN EN 13858 (Großteile), DIN EN ISO 10683 (Verbindungselemente)					
Schichtdicke (Richtwerte)	Blechteile 8 <u>12</u> µm Norm- und Gewinde- teile: 5 8 µm	schmelztauch- veredeltes Stahlband ca. 15 µm	Kleinteile 55 µm, Großteile 70 µm, Verbindungselemente ≥ M8 ca. 40 µm	höchster Korrosionsschutz, bis zu mehr als 1200 h Beständigkeit im Salz- sprühnebeltest *) It. MPA- Prüfbericht 901 2659 000.					
Beispiele									

*) Salzsprühnebeltest nach DIN EN ISO 9227

Bei außergewöhlicher Korrosionsbelastung empfehlen wir zusätzlich zum HCP-Programm:

- ♦ KTL-Beschichtung kratzfest, beständig gegen Schlag und Salzwasser
- ♦ Pulver-Beschichtung chemikalien- und witterungsbeständig, RAL-Farbpalette oder
- ♦ unser abgestimmtes Sortiment in rostfreiem Edelstahl V4A.

Sprechen Sie uns an - wir beraten Sie.

		V	V	V	V		V		·		·				V	V		
	♦	♦	♦	\$	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	
	*	♦	♦	\$	♦	*	♦	\$	♦	♦	*	♦	♦	\$	♦	♦	♦	4
	♦	♦	♦	\$	♦	♦	♦	\$	♦	♦	\$	♦	♦	♦	♦	♦	♦	<
	♦	♦	♦	♦	♦	♦	♦	\$	\$	\$	\$	♦	♦	♦	\$	♦	♦	<
	*	♦	♦	♦	♦	♦	\$	\$	♦	♦	\$	♦	♦	♦	♦	♦	♦	<
	♦	♦	♦	♦	♦	♦	\$	<	♦	♦	♦	<	♦	♦	<	♦	♦	<
	*	\$		\$	♦		♦	\$	♦		\$	♦	♦	\$	♦	♦	♦	4
	*	♦	\$	♦	♦	\$	♦	\$		\$	\$	\$	♦	♦	\$	♦	♦	4
	♦	♦	♦	\$	♦		\$				\$			\$		\$	♦	4
	*		*	\$	♦	*	♦			*	*						♦	
	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	
	*	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	4
	*	♦	\$	\$	♦	\$	♦	\$	♦	\$	\$	\$	♦	♦	\$	♦	♦	4
	♦	♦	♦	♦	♦	♦	♦	♦	♦	♦	\$	♦	♦	♦	♦	♦	♦	4
	♦	♦	♦	♦	♦	<	\$	<	♦	<	♦	♦	♦	♦	♦	\$	♦	4
	♦	♦	♦	\$	♦	♦	♦	♦	♦	♦	*	♦	♦	\$	♦	♦	♦	
	♦	♦	♦	♦	♦	\$	♦	\$	\$	\$	\$	♦	♦	♦	\$	♦	♦	<
	*	♦	♦	♦	♦	♦	♦	\$	♦	♦	\$	♦	♦	♦	♦	♦	♦	<
	*	♦	*	\$	*	*	♦	*	*	*	*	*	*	\$	*	♦	♦	
· · · · · · · · · · · · · · · · · · ·	♦	\$		\$	♦		♦		♦				♦	\$		♦	♦	
	♦	\$		\$	♦		♦						♦	\$		*	♦	4
		^		^		^	^	^		^	^		^	^		^	^	